Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Journal of Field Robotics ; 2023.
Article in English | Web of Science | ID: covidwho-20243007

ABSTRACT

Agricultural tractor drivers experience a high amplitude of vibration, especially during soil tillage operations. In the past, most research studied vibration exposure with more focus on the vertical (z) axis than on the fore-and-aft (x) and lateral (y) axes. This study examines how rotary soil tillage affects the vibration acceleration and frequency, and the power spectral densities (PSDs) at the seat pan and head along three translational axes in a real-field multiaxis vibration context. Moreover, this study aimed to identify the characteristics of the seat-to-head transmissibility (STHT) response to identifying the most salient resonant frequencies along the x-, y-, and z-axes. Nine (9) male tractor drivers operated the tractor with a mounted rotary tiller throughout the soil tillage process. In the event of a COVID-19 pandemic, and to respect social distancing, this study developed an Internet of Things (IoT) module with the potential to integrate with existing data loggers for online data transmission and to make the experimentation process more effective by removing potential sources of experimenter errors. The raw acceleration data retrieved at the seat pan and the head were utilized to obtain daily exposure (A(8)), PSDs, and STHT along the x-, y-, and z-axes. The vibration energy was found to be dominant along the z-axis than the x- and y-axes. A(8) response among tractor drivers exceeds the exposure action value explicitly stated by Directive 2002/44/EU. PSDs along the x-, y-, and z-axes depicted the low-frequency vibration induced by rotary soil tillage operation. The STHT response exhibited a higher degree of transmissibility along the y- and z-axes when compared with that along the x-axis. The frequency range of 4-7 Hz may plausibly be associated with cognitive impairment in tractor drivers during rotary soil tillage.

2.
Rev. bras. oftalmol ; 80(5): e0043, 2021. tab
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-2325279

ABSTRACT

ABSTRACT Introduction: The SARS-CoV-2 pandemic has been a major challenge for the international scientific community. Since its inception, studies aiming to describe pathophysiological aspects and clinical manifestations of the disease have been conducted, raising hypotheses and confirming possible associations. One aspect of this scientific medical production is the role of the ocular surface as a means of transmission and clinical presentation of viral syndrome. Objectives: To analyze the role of the ocular surface in transmission, pathophysiology, and clinical manifestations of SARS-CoV-2, by means of a systematic review. Methods: The search was carried out in three databases: Cochrane, PubMed Central Journals and MEDLINE, using the following descriptors: "COVID-19, ophthalmology". The filters last five years and studies on humans resulted in 32 studies; in that 12 were excluded for not meeting the purpose of the study. Results: There are still few published studies on the relation between SARS-CoV-2 and the ocular route. Most studies showed an association between the presence of nonspecific ocular manifestations and infection by the new coronavirus, with limitations in the number of patients analyzed and the methodology adopted. Hypotheses about the pathophysiological role are largely anchored in the association of SARS-CoV and the ocular surface evaluated in the past. Comments: The results found are still not sufficient to confirm the role of the ocular surface in the pathophysiology of the disease. Most of these preliminary studies are of considerable importance in raising hypotheses based on the medical analysis of the patients studied. However, larger studies with standardized methodology for diagnostic protocol and laboratory analysis of the individuals assessed are required.


RESUMO Introdução: A pandemia da SARS-CoV-2 tem sido um grande desafio para a comunidade científica internacional. Desde seu surgimento, estudos com a intenção de descrever os aspectos fisiopatológicos e as manifestações clínicas da doença vêm sendo conduzidos, levantando hipóteses e confirmando possíveis associações. Um dos temas dessa produção médica científica é o papel da superfície ocular como meio de transmissão e apresentação clínica da síndrome viral. Objetivo: Analisar o papel da superfície ocular na transmissão, na fisiopatologia e nas manifestações clínicas de SARS-CoV-2, através de uma revisão sistemática. Realizou-se a busca em três bancos de dados Cochrane Database, PubMed® e MEDLINE®, utilizando os descritores "COVID-19 e ophthalmology". Foram definidos como filtros o artigo ter sido publicado nos últimos 5 anos e estudo realizado em humanos, tendo sido encontrados 32 artigos. Destes, foram excluídos 12 por não corresponderem ao objetivo do estudo. Resultados: Ainda são poucos os estudos publicados sobre a relação entre o coronavírus 2 da síndrome respiratória aguda grave (SARS-CoV-2) e a via ocular. A maioria dos estudos mostrou associação entre a presença de manifestações oculares inespecíficas e a infecção pelo novo coronavírus, com limitações no número de pacientes analisados e na metodologia adotada. Hipóteses sobre o papel fisiopatológico se ancoram, em grande parte, na associação estudada entre o SARS-CoV-2 e a superfície ocular no passado. Comentários: Os resultados encontrados ainda não são suficientes para confirmar o papel da superfície ocular na fisiopatologia da doença. Grande parte desses estudos preliminares têm importância considerável ao levantar hipóteses baseadas na análise clínica dos pacientes estudados. No entanto, são necessários estudos maiores e com metodologia padronizada para protocolo diagnóstico e análise laboratorial dos indivíduos avaliados.


Subject(s)
Humans , Eye Infections, Viral/transmission , Coronavirus Infections/complications , Coronavirus Infections/transmission , Eye Diseases/virology , Eye Manifestations , Tears/virology , Conjunctivitis, Viral/transmission , Conjunctiva/virology , Eye/virology , Betacoronavirus/isolation & purification , SARS-CoV-2 , COVID-19
3.
Evol Med Public Health ; 11(1): 80-89, 2023.
Article in English | MEDLINE | ID: covidwho-2289323

ABSTRACT

Non-pharmaceutical interventions (NPIs), such as social distancing and contact tracing, are important public health measures that can reduce pathogen transmission. In addition to playing a crucial role in suppressing transmission, NPIs influence pathogen evolution by mediating mutation supply, restricting the availability of susceptible hosts, and altering the strength of selection for novel variants. Yet it is unclear how NPIs might affect the emergence of novel variants that are able to escape pre-existing immunity (partially or fully), are more transmissible or cause greater mortality. We analyse a stochastic two-strain epidemiological model to determine how the strength and timing of NPIs affect the emergence of variants with similar or contrasting life-history characteristics to the wild type. We show that, while stronger and timelier NPIs generally reduce the likelihood of variant emergence, it is possible for more transmissible variants with high cross-immunity to have a greater probability of emerging at intermediate levels of NPIs. This is because intermediate levels of NPIs allow an epidemic of the wild type that is neither too small (facilitating high mutation supply), nor too large (leaving a large pool of susceptible hosts), to prevent a novel variant from becoming established in the host population. However, since one cannot predict the characteristics of a variant, the best strategy to prevent emergence is likely to be an implementation of strong, timely NPIs.

4.
Glob Health Med ; 5(2): 75-77, 2023 Apr 30.
Article in English | MEDLINE | ID: covidwho-2301155

ABSTRACT

In Japan, there has been a discussion of the potential reclassification of the novel coronavirus infectious disease 2019 (COVID-19) as an infectious disease under the Act on the Prevention of Infectious Diseases and Medical Care for Patients with Infectious Diseases (the Infectious Diseases Control Law), beginning in late 2022. To make an informed decision, the societal impact of COVID-19 needs to be carefully considered to ensure that any reclassification does not negatively impact healthcare or society as a whole. The disease burden of COVID-19 remains considerable and is likely to persist for an extended period of time. Consequently, numerous special measures have been taken in the healthcare system to cope with COVID-19. Several of these measures must be implemented. Thus, the healthcare system needs to be strengthened in the future. This will result in adequate prevention, preparation, and a response to future pandemics.

5.
J Travel Med ; 2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2296120

ABSTRACT

South Korea implemented restrictions on travel from China in January of 2023. In this scenario-based model, we estimated that the travel restrictions for inbound travellers from China were associated with a 0.3%-9.8% decrease in the internal spread of SARS-CoV-2 in South Korea (95% Confidence Interval, 0.2%-11.7%).

6.
ChemistrySelect ; 8(9), 2023.
Article in English | Scopus | ID: covidwho-2272565

ABSTRACT

The Omicron (B.1.1.529), fifth variant of concern (VOC) of SARS-CoV-2, initially identified following a steep increase in COVID-19 cases in Southern Africa in November 2021. It is a highly-mutated variant and is more contagious as compared with the Delta variant, however less deadly. Due to its high transmission rate, it spreads dramatically, and causing huge surges worldwide. It causes "mild infection”, with hospitalisations less likely to occur. However, this variant is known to show resistance to neutralizing antibodies (nAbs) generated through vaccination and/or prior infection as well as to monoclonal antibodies (mAbs) used to treat COVID-19 patients. In many countries, booster doses of vaccines have been recommended to increase the protective levels of antibodies in vaccinated individuals. Along with the implementation of appropriate prevention and control strategy measures, current efforts are also focussed on the development of better vaccines and mAbs to counter this variant. This review highlights the global health concerns and challenges posed by the Omicron variant and present an update on its sub-lineages. © 2023 Wiley-VCH GmbH.

7.
Malaysian Journal of Pathology ; 44(3):387-396, 2022.
Article in English | EMBASE | ID: covidwho-2270559

ABSTRACT

The genetic evolution of SARS-CoV-2 began in February 2020, with G614 spike protein strains superseding D614 strains globally. Since then with each subsequent mutations, the SARS-CoV-2 variants of concern, namely Alpha, Beta, Gamma, Delta and Omicron, superseded the previous one to become the dominant strain during the pandemic. By the end of November 2022, the Omicron variant and its descendent lineages account for 99.9% of sequences reported globally. All five VOCs have mutations located in the RBD of the spike protein, resulting in increased affinity of the spike protein to the ACE2 receptors resulting in enhanced viral attachment and its subsequent entry into the host cells. In vitro studies showed the mutations in spike protein help increase the viral fitness, enhancing both transmissibility and replication. In general, Alpha, Beta, Gamma, and Delta variants, were reported with higher transmissibility of 43-90%, around 50%, 170-240%, or 130-170% than their co-circulating VOCs, respectively. The Omicron however was found to be 2.38 times and 3.20 times more transmissible than Delta among the fully-vaccinated and booster-vaccinated households. Even the SARS-Cov-2 Omicron subvariants appear to be inherently more transmissible than the ones before. With the broader distribution, enhanced evasion, and improved transmissibility, SARS-CoV-2 variants infection cause severe diseases due to immune escape from host immunity and faster replication. Reports have shown that each subsequent VOC, except Omicron, cause increased disease severity compared with those infected with other circulating variants. The Omicron variant infection however, appears to be largely associated with a lower risk of hospitalisation, ICU admission, mechanical ventilation, and even a shorter length of hospital stay. It has been shown that the relatively much slower replication of the Omicron variants in the lung, resulted in a less severe disease.Copyright © 2022, Malaysian Society of Pathologists. All rights reserved.

8.
BIOpreparations ; Prevention, Diagnosis, Treatment. 22(4):351-360, 2022.
Article in Russian | EMBASE | ID: covidwho-2281804

ABSTRACT

Morbidity surveys in certain regions during the COVID-19 pandemic have established that the infection spreads in a wave-like manner characterised with peaks and troughs in incidence. According to the analysis of COVID-19 epidemic development in Russia, surges in COVID-19 infections are mainly driven by seasonal factors, insufficient herd immunity, and emerging SARS-CoV-2 variants with increased transmissibility. The aim of the study was to analyse environmental, biological and social factors contributing to new rises in COVID-19 cases in Russia. The study covers the global epidemiological situation as of mid-2022 and the role of environmental, biological, and social factors in the spread of COVID-19 in the Russian Federation. The results suggest that new highly contagious SARS-CoV-2 variants and seasonality are the principal factors driving new rises in morbidity. The authors assume that the sixth and the seventh COVID-19 waves in Russia will be in line with the best case scenario, which predicts the spread of a SARS-CoV-2 variant with increased transmissibility and reduced virulence.Copyright © 2023 Safety and Risk of Pharmacotherapy. All rights reserved.

9.
Z Gesundh Wiss ; : 1-9, 2021 Apr 16.
Article in English | MEDLINE | ID: covidwho-2262172

ABSTRACT

AIM: The outbreak of the new coronavirus pandemic (SARS-CoV-2) was initiated in December 2019, and within a couple of months it became a global health emergency. Given the importance to assess the evolution and transmissibility of SARS-CoV-2 and to forecast the next scenario of the pandemic, mainly in countries with limited healthcare systems, we estimated the reproductive number (R0) of SARS-CoV-2 in Jammu and Kashmir (J&K), India, and a possible scenario for this pandemic in the region. SUBJECT AND METHODS: We estimated the reproductive number (R0) of SARS-CoV-2 in its first outbreak stage in the northwestern region of Himalaya, India, and we also predicted new daily cases for the next 90 days using different R0, testing a plausible end of the SARS-CoV-2 outbreak. RESULTS: Our results showed a considerable increase in the number of cases, but with a tendency to asymptote. Anantnag, Bandipora, Baramulla, Shopian, and Srinagar districts showed more than 100 cases and Kulgam and Kathua districts showed strong growth of the number of cases from the beginning of May, without a tendency to normalization. The estimated R0 for the J&K region was 1.041; but by decreasing the RO by 10, 25, and 50%, we observed a great decrease in the daily number of new cases, especially by decreasing by 50%. CONCLUSION: In this study, we indicate positive effects of the preventive measures, such as lockdown and social distancing, taken in the J&K region, showing a stabilization of the growth curves of new cases of SARS-CoV-2, which tends to a strong decrease over time as the R0 decreases.

10.
Eur J Med Res ; 28(1): 94, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2265598

ABSTRACT

SARS-COV-2 is responsible for the current worldwide pandemic, which started on December 2019 in Wuhan, China. On March 2020 World Health Organization announced COVID-19 as the new pandemic. Some SARS-COV-2 variants have increased transmissibility, cause more severe disease (e.g., increased hospitalizations or deaths), are resistant to antibodies produced by the previous infection or vaccination, and there is more difficulty in treatment and diagnosis of them. World Health Organization considered them as SARS-CoV-2 variants of concern. The introductory reproduction rate (R0) is an epidemiologic index of the transmissibility of the virus, defined as the average number of persons infected by the virus after known contact with an infectious person in a susceptible population. An R0 > 1 means that the virus is spreading exponentially, and R0 < 1, means that the outbreak is subsiding. In various studies, the estimated R and VOC growth rates were reported to be greater than the ancestral strains. However, it was also a low level of concordance between the estimated Rt of the same variant in different studies. It is because the R of a variant not only dependent on the biological and intrinsic factors of the virus but also several parameters can affect the R0, including the duration of contagiousness and the likelihood of infection per contact. Evaluation of changes in SARS-CoV-2 has shown that the rate of human-to-human transmission of this virus has increased. Like other viruses with non-human sources which succeeded in surviving in the human population, SARS-CoV-2 has gradually adapted to the human population, and its ability to transmit from human to human has increased. Of course, due to the continuous changes in this virus, it is crucial to survey the rate of transmission of the virus over time.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Pandemics , Reproduction
11.
Infect Disord Drug Targets ; 23(4): e020323214247, 2023.
Article in English | MEDLINE | ID: covidwho-2277922

ABSTRACT

The highly transmissible variation of COVID-19 has a new sub-variant known as a variant BA.2.75, which was initially discovered in India and is now found in at least 10 more countries. The World Health Organization (WHO) officials said that the new variant is actively being monitored. It has yet to be determined if the new variation is more clinically severe than its predecessors. It is known that the Omicron strain sub-variants are responsible for this rise in the worldwide COVID tally. It is too early to know if this sub-variant exhibits additional immune evasion characteristics, or is more clinically severe. The extremely contagious BA.2.75 sub-variant of Omicron has been documented in India, but there is no evidence yet that it has increased disease severity or dissemination. Many of the BA.2 lineage's sublineages form a unique collection of mutations as it evolves. A related branch of the BA.2 lineage is B.2.75. The size of genomic sequencing must be increased and maintained for the early detection of the variant strains of SARS-CoV-2. BA.2.75 is the second generation of BA.2 variations and has a high transmissibility level.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , India/epidemiology , Mutation , World Health Organization
12.
Virol J ; 20(1): 59, 2023 04 02.
Article in English | MEDLINE | ID: covidwho-2270632

ABSTRACT

BACKGROUND: The World Health Organization (WHO) has currently detected five Variants of Concern of SARS-CoV-2 having the WHO labels of 'Alpha', 'Beta', 'Gamma', 'Delta' and 'Omicron'. We aimed to assess and compare the transmissibility of the five VOCs in terms of basic reproduction number, time-varying reproduction number and growth rate. METHODS: Publicly available data on the number of analyzed sequences over two-week windows for each country were extracted from covariants.org and GISAID initiative database. The ten countries which reported the highest number of analyzed sequences for each of the five variants were included in the final dataset and was analyzed using R language. The epidemic curves for each variant were estimated utilizing the two-weekly discretized incidence data using local regression (LOESS) models. The basic reproduction number was estimated with the exponential growth rate method. The time-varying reproduction number was calculated for the estimated epidemic curves by the ratio of the number of new infections generated at time step t to the total infectiousness of infected individuals at time t, using the EpiEstim package. RESULTS: The highest R0 for the variants Alpha (1.22), Beta (1.19), Gamma (1.21), Delta (1.38) and Omicron (1.90) were reported from Japan, Belgium, the United States, France and South Africa, respectively. Nine out of ten epidemic curves with the highest estimated growth rates and reproduction numbers were due to the Omicron variant indicating the highest transmissibility. CONCLUSIONS: The transmissibility was highest in the Omicron variant followed by Delta, Alpha, Gamma and Beta respectively.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Basic Reproduction Number , Databases, Factual
13.
Epidemiol Infect ; 151: e58, 2023 03 20.
Article in English | MEDLINE | ID: covidwho-2249126

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) rapidly replaced Delta (B.1.617.2) to become dominant in England. Our study assessed differences in transmission between Omicron and Delta using two independent data sources and methods. Omicron and Delta cases were identified through genomic sequencing, genotyping and S-gene target failure in England from 5-11 December 2021. Secondary attack rates for named contacts were calculated in household and non-household settings using contact tracing data, while household clustering was identified using national surveillance data. Logistic regression models were applied to control for factors associated with transmission for both methods. For contact tracing data, higher secondary attack rates for Omicron vs. Delta were identified in households (15.0% vs. 10.8%) and non-households (8.2% vs. 3.7%). For both variants, in household settings, onward transmission was reduced from cases and named contacts who had three doses of vaccine compared to two, but this effect was less pronounced for Omicron (adjusted risk ratio, aRR 0.78 and 0.88) than Delta (aRR 0.62 and 0.68). In non-household settings, a similar reduction was observed only in contacts who had three doses vs. two doses for both Delta (aRR 0.51) and Omicron (aRR 0.76). For national surveillance data, the risk of household clustering, was increased 3.5-fold for Omicron compared to Delta (aRR 3.54 (3.29-3.81)). Our study identified increased risk of onward transmission of Omicron, consistent with its successful global displacement of Delta. We identified a reduced effectiveness of vaccination in lowering risk of transmission, a likely contributor for the rapid propagation of Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , England/epidemiology
14.
BMC Public Health ; 23(1): 404, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2285998

ABSTRACT

OBJECTIVE: To summarise the dynamic characteristics of COVID-19 transmissibility; To analyse and quantify the effect of control measures on controlling the transmissibility of COVID-19; To predict and compare the effectiveness of different control measures. METHODS: We used the basic reproduction number ([Formula: see text]) to measure the transmissibility of COVID-19, the transmissibility of COVID-19 and control measures of 176 countries and regions from January 1, 2020 to May 14, 2022 were included in the study. The dynamic characteristics of COVID-19 transmissibility were summarised through descriptive research and a Dynamic Bayesian Network (DBN) model was constructed to quantify the effect of control measures on controlling the transmissibility of COVID-19. RESULTS: The results show that the spatial transmissibility of COVID-19 is high in Asia, Europe and Africa, the temporal transmissibility of COVID-19 increases with the epidemic of Beta and Omicron strains. Dynamic Bayesian Network (DBN) model shows that the transmissibility of COVID-19 is negatively correlated with control measures. Restricting population mobility has the strongest effect, nucleic acid testing (NAT) has a strong effect, and vaccination has the weakest effect. CONCLUSION: Strict control measures are essential for controlling the COVID-19 outbreak; Restricting population mobility and nucleic acid testing (NAT) have significant impacts on controlling the COVID-19 transmissibility, while vaccination has no significant impact. In light of these findings, future control measures may include the widespread use of new NAT technology and the promotion of booster immunization.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Bayes Theorem , COVID-19/epidemiology , COVID-19/prevention & control , Africa/epidemiology , Asia
15.
Microorganisms ; 11(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2229010

ABSTRACT

SARS-CoV-2 expresses on its surface the Spike protein responsible for binding with the ACE2 receptor and which carries the majority of immunodominant epitopes. Mutations mainly affect this protein and can modify characteristics of the virus, giving each variant a unique profile concerning its transmissibility, virulence, and immune escape. The first lineage selected is the B.1 lineage characterized by the D614G substitution and from which all SARS-CoV-2 variants of concern have emerged. The first three variants of concern Alpha, Beta, and Gamma spread in early 2021: all shared the N501Y substitution. These variants were replaced by the Delta variant in summer 2021, carrying unique mutations like the L452R substitution and associated with higher virulence. It was in turn quickly replaced by the Omicron variant at the end of 2021, which has predominated since then, characterized by its large number of mutations. The successive appearance of variants of concern showed a dynamic evolution of SARS-CoV-2 through the selection and accumulation of mutations. This has not only allowed progressive improvement of the transmissibility of SARS-CoV-2, but has also participated in a better immune escape of the virus. This review brings together acquired knowledge about SARS-CoV-2 variants of concern and the impacts of the Spike mutations.

16.
Comput Biol Med ; 153: 106510, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2237174

ABSTRACT

SARS-CoV-2 has caused tremendous deaths globally. It is of great value to predict the evolutionary direction of SARS-CoV-2. In this paper, we proposed a novel mathematical model that could predict the evolutionary trend of SARS-CoV-2. We focus on the mutational effects on viral assembly capacity. A robust coarse-grained mathematical model is constructed to simulate the virus dynamics in the host body. Both virulence and transmissibility can be quantified in this model. A delicate equilibrium point that optimizes the transmissibility can be numerically obtained. Based on this model, the virulence of SARS-CoV-2 might further decrease, accompanied by an enhancement of transmissibility. However, this trend is not continuous; its virulence will not disappear but remains at a relatively stable range. A virus assembly model which simulates the virus packing process is also proposed. It can be explained why a few mutations would lead to a significant divergence in clinical performance, both in the overall particle formation quantity and virulence. This research provides a novel mathematical attempt to elucidate the evolutionary driving force in RNA virus evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Models, Theoretical
17.
Clin Infect Dis ; 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-2233286

ABSTRACT

We used variant typing PCR to describe the evolution of SARS-CoV-2 Omicron sublineages between December 2021 and mid-March 2022. The selective advantage of the BA.2 variant over BA.1 is not due to greater nasopharyngeal viral loads.

18.
Int J Infect Dis ; 134: 78-87, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2220802

ABSTRACT

OBJECTIVES: The Omicron BA.2 variant is probably the main epidemic strain worldwide at present. Comparing the epidemiological characteristics, transmissibility, and influencing factors of SARS-CoV-2, the results obtained in this paper will help to provide theoretical support for disease control. METHODS: This study was a historical information analysis, using the R programming language and SPSS 24.0 for statistical analysis. The Geoda and Arc GIS were used for spatial autocorrelation analysis. RESULTS: Local spatial autocorrelations of the incidence rate were observed in Delta and Omicron BA.1 outbreaks, whereas Omicron BA.2 outbreaks showed a random distribution in incidence rate. The time-dependent reproduction number of Delta, Omicron BA.1, and Omicron BA.2 were 3.21, 4.29, and 2.96, respectively, and correspondingly, the mean serial interval were 4.29 days (95% confidence interval [CI]: 0.37-8.21), 3.84 days (95% CI: 0-8.37), and 2.77 days (95% CI: 0-5.83). The asymptomatic infection rate of cases in Delta, Omicron BA.1, and Omicron BA.2 outbreaks were 21.71%, 6.25%, and 4.35%, respectively. CONCLUSION: The Omicron BA.2 variant had the greatest serial interval, transmissibility, and transmission speed, followed by BA.1, and then Delta. Compared with Delta and Omicron BA.1 variants, the Omicron BA.2 variant may be less pathogenic and more difficult to control than Omicron BA.1 and Delta.

19.
Elife ; 122023 01 20.
Article in English | MEDLINE | ID: covidwho-2217485

ABSTRACT

Against a backdrop of widespread global transmission, a number of countries have successfully brought large outbreaks of COVID-19 under control and maintained near-elimination status. A key element of epidemic response is the tracking of disease transmissibility in near real-time. During major outbreaks, the effective reproduction number can be estimated from a time-series of case, hospitalisation or death counts. In low or zero incidence settings, knowing the potential for the virus to spread is a response priority. Absence of case data means that this potential cannot be estimated directly. We present a semi-mechanistic modelling framework that draws on time-series of both behavioural data and case data (when disease activity is present) to estimate the transmissibility of SARS-CoV-2 from periods of high to low - or zero - case incidence, with a coherent transition in interpretation across the changing epidemiological situations. Of note, during periods of epidemic activity, our analysis recovers the effective reproduction number, while during periods of low - or zero - case incidence, it provides an estimate of transmission risk. This enables tracking and planning of progress towards the control of large outbreaks, maintenance of virus suppression, and monitoring the risk posed by re-introduction of the virus. We demonstrate the value of our methods by reporting on their use throughout 2020 in Australia, where they have become a central component of the national COVID-19 response.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , Disease Outbreaks
20.
Front Public Health ; 10: 933075, 2022.
Article in English | MEDLINE | ID: covidwho-2215404

ABSTRACT

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.617.2 (also named the Delta variant) was declared as a variant of concern by the World Health Organization (WHO). This study aimed to describe the outbreak that occurred in Nanjing city triggered by the Delta variant through the epidemiological parameters and to understand the evolving epidemiology of the Delta variant. Methods: We collected the data of all COVID-19 cases during the outbreak from 20 July 2021 to 24 August 2021 and estimated the distribution of serial interval, basic and time-dependent reproduction numbers (R0 and Rt), and household secondary attack rate (SAR). We also analyzed the cycle threshold (Ct) values of infections. Results: A total of 235 cases have been confirmed. The mean value of serial interval was estimated to be 4.79 days with the Weibull distribution. The R0 was 3.73 [95% confidence interval (CI), 2.66-5.15] as estimated by the exponential growth (EG) method. The Rt decreased from 4.36 on 20 July 2021 to below 1 on 1 August 2021 as estimated by the Bayesian approach. We estimated the household SAR as 27.35% (95% CI, 22.04-33.39%), and the median Ct value of open reading frame 1ab (ORF1ab) genes and nucleocapsid protein (N) genes as 25.25 [interquartile range (IQR), 20.53-29.50] and 23.85 (IQR, 18.70-28.70), respectively. Conclusions: The Delta variant is more aggressive and transmissible than the original virus types, so continuous non-pharmaceutical interventions are still needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Bayes Theorem , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL